首页> 外文OA文献 >A constraint satisfaction approach for enclosing solutions to parametric ordinary differential equations
【2h】

A constraint satisfaction approach for enclosing solutions to parametric ordinary differential equations

机译:封闭参数常微分方程解的约束满足方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper considers initial value problems for ordinary differential equations (ODEs), where some of the data is uncertain and given by intervals as is the case in many areas of science and engineering. Interval methods provide a way to approach these problems, but they raise fundamental challenges in obtaining high accuracy and low computation costs. This work introduces a constraint satisfaction approach to these problems which enhances traditional interval methods with a pruning step based on a global relaxation of the ODE. The relaxation uses Hermite interpolation polynomials and enclosures of their error terms to approximate the ODE. Our work also shows how to find an evaluation time for the relaxation that minimizes its local error. Theoretical and experimental results show that the approach produces significant improvements in accuracy over the best interval methods for the same computation costs. The results also indicate that the new algorithm should be significantly faster when the ODE contains many operations.
机译:本文考虑了常微分方程(ODE)的初值问题,其中一些数据是不确定的,并且像科学和工程学的许多领域一样,由间隔给出。间隔方法提供了解决这些问题的方法,但是它们在获取高精度和低计算成本方面提出了根本性的挑战。这项工作为这些问题引入了一种约束满足方法,该方法通过基于ODE的整体松弛的修剪步骤增强了传统的区间方法。松弛使用Hermite插值多项式及其误差项的包围来逼近ODE。我们的工作还显示了如何找到松弛的评估时间,以最大程度地减少其局部误差。理论和实验结果表明,与相同计算成本的最佳间隔方法相比,该方法在准确性上有显着提高。结果还表明,当ODE包含许多操作时,新算法应明显更快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号